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Laminar convection of a radiating gas 
in a vertical channel 

By R. GREIF,? I. S. HABIB$ AND J. C.  LIN 
University of California, Berkeley 

(Received 12 July 1970) 

An. exact solution is obtained for the problem of fully-developed, radiating, 
laminar convective flow in a vertical heated channel. The effect of radiation is 
to decrease the temperature difference between the gas and the wall, thereby 
reducing the influence of natural convection. Thus, the reduction in velocity 
occurring in a heated upflow is less for a, radiating gas. Graphs are presented for 
the dimensionless velocity and temperature profiles and for the volume and 
heat fluxes. 

Introduction 
Natural convection is the transport of energy resulting from a distributed 

buoyancy force which, for our study, results from variations in density. The 
buoyancy force also modifies the flow, thereby causing an interaction between 
the velocity and temperature fields. This coupling is a fundamental charac- 
teristic of natural convection flows and therefore requires the velocity and 
temperature fields to be solved simultaneously. 

Problems of combined natural and forced flows have been studied by Ostrach 
(1954, 1958). He considered the flow between vertical plates and included the 
effects of viscous dissipation and heat sources. Morton (1959, 1960) also con- 
sidered the combined flow problem in vertical as well as in horizontal pipes. 
In  this study we consider the combined natural and forced flow of a radiating 
gas between vertical plates. The effect of the radiating medium is to further 
modify the temperature and the velocity fields. We restrict ourselves to the 
optically thin limit so that the gas emits but only absorbs radiation emitted by 
the boundaries. This condition is one of physical interest. Furthermore, the 
study of optically thin flows has, in the past, resulted in increased understanding 
of the phenomena which could then be utilized in the analysis of more general 
and more complex problems (cf. Habib & Greif 1970). 

Formulation 
We consider the steady fully-developed flow of a fluid between vertical, plane, 

parallel walls under a constant pressure gradient. It is assumed that the viscosity, 
thermal conductivity and specific heat are independent of temperature and that 
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the essential influence of the variation in density is included in the body force 
term; that is, in the coefficient of thermal expansion. The temperatures of the 
walls are the same and are maintained at  a constant temperature gradient 7 / b  
so that the wall temperature, T,, is given by T, = To+ ( r / b )  x, where x is the 
co-ordinate in the vertical direction, To is the temperature of the wall at  the 
origin and, following Morton, may be regarded as representative for the region 
of flow considered. The flow field and the temperature field are symmetrical 
about the centre-line of the channel, y = 0, with the width of the channel equal 
to 2h. 

Under the conditions specified the equations of continuity, momentum and 
energy are given by (cf. Morton 1960): 

aupx = 0, ( 1 )  

= 0,  

where u is the axial velocity, CI the thermal diffusivity, v the kinematic viscosity, 
/I the coefficient of thermal expansion and qR is the radiative flux. In the optically 
thin limit, the fluid does not absorb its own emitted radiation; that is, there is 
no self-absorption, but it does absorb radiation emitted by the boundaries. 
Under these conditions, we obtain 

agRlay = 4Kp uT4- 4K,aTk, ( 5 )  

where K p  and K ,  are the Planck mean and the modified Planck mean absorption 
coefficients, respectively (Sparrow & Cess 1966). Cogley, Vincenti & Gilles (1968) 
have shown that in the optically thin limit for a non-grey gas near equilibrium 
that, 

which comes directly from ( 5 )  where Ic, is the absorption coefficient and e,, is 
the Planck function. Additional simplifications can be made concerning the 
spectral properties of radiating gases (cf. Tien 1968) but for our purposes these 
are not necessary. Thus, the energy equation becomes 

urlub = d28/dy2 + C8, (7)  

where O(y) = Tw-T and C = (4/K,)  k,,(de,,/dT),dh, with K ,  the thermal 

conductivity. AIl quantities have been evaluated a t  To thereby linearizing (7).  
We therefore limit our study to small variations in the wall temperature. Intro- 
ducing the transformations y = b y ,  u = a U / b  and 8 = r$ reduces (7) to the 

(8) 
dimensionless form 

1: 

d2$/d Y 2  - F$ = - U, 
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where F = b2C. The parameter P is a measure of the energy transport due to 
radiation relative to that due to conduction. In a similar manner, the momentum 
equation in the x direction, equation (2)) becomes 

(9). d W / d  Y 2  = Ra$ - y, 

- bY(llP0) @4ax+g)lva 

where Ra, the Rayleigh number, equals gprb3/va and y is given by 

(cf. Morton 1960). Note that in the absence of thermal radiation F = 0 and in 
the absence of natural convection Ra = 0. 

Solution 
Differentiating (8) twice with respect to Y and then eliminating U by using (9) 

yields 

The general solution to (10) for b, not equal to b, is of the form? 

4 = y/Ra + A  cash b, Y +Bsinh b, Y + C cash b, Y + D sinh b, Y ,  ( 1  I )  

where b,,, = &[F f (F2 - 4Ra)*] (12) 

and A ,  B, C and D are arbitrary constants. Equation ( 1 1 )  must satisfy the 
boundary conditions $ ( 1 )  = 0 = q5( - 1) and from (8) we also have that 

$ " ( 1 )  = 0 = $"( - l ) ,  

where we have made use of the fact that the velocity vanishes at the walls. 
The solution to the differential equation subject to these boundary conditions 
is then given by - 

b2, cosh b2 Y - b2, cosh b, Y -- +Ra- 1 +  
Y (b; - 62,) cash b2 (bg - b2,) cash b,' 

For the condition F2 - 4Ra c 0 the solution can be written more conveniently 
in the following form : 

where b, = n( 1 2Rat+ F ) ) ,  b, = &(2Ra&-F); 
q5Raly = 1 - a, cosh b, Y cos b, Y + a2 sinh b, Y sin b, Y ,  

1 
- (4Ra-F2)4' 

- (4Ra-F2)4' 

F sinh b, sin b, + (4Ra - F2)4 cosh b, cos b, 
Gosh2 b, cos2 b, + sinh2 b, sin2 6 ,  

F cosh b, cos b, - (4Ra - F2)J sinh b, sin b, 
cosh2 b, cos2 b, + sinh2 b, sin2 b, 

a -  and 9 

1 
a -  

For the condition F2 = 4Ra we obtain the following solution 

where E = Raa and 
#Ra/y = 1 - a, cosh E Y + a4 Y sinh E Y ,  

a, 2E cosh2 E = E2 sinh E + 2E cosh E,  
a42E Gosh2 E = E2 cosh E .  

t The solution for the case 6 ,  equal to b, is given in (17). 
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For the non-radiating problem, P = 0, and the temperature distribution becomes 

cosh [( 1 + Y) E/24] cos [( 1 - Y) E/2t] 
+ cosh [(l - Y) E/26] cos [( 1 + Y) E/26] @- - 1- cosh (E2t) + cos (E26) (19) 

Y 

This relation agrees with the result of Tao (1960) for steady laminar flow in a 
vertical channel under the influence of combined natural and forced convection. 
In  the absence of both natural convection, Ra = 0, and radiation, F = 0, the 
temperature distribution is given by 

4 = (y/24)(Y4-6Y2+5). (20) 

Once we have determined the temperature distribution, the velocity profile 
can be obtained from (9). Alternatively, the velocity profile could have been 
determined first thereby permitting the evaluation of the temperature profile. 
The basic point, of course, is that the presence of natural convection couples 
the energy and momentum equations. 

Substituting the ‘general’ result for the temperature, that is, (13) into (9) 
and integrating yields 

Y 

From (9) and (14) we obtain for the condition F2 - 4Ra < 0 the result 

U F  2 1 
y 4Ra 4Ra-F2Ra6 

- (cosh2 b, cos2 b, + sinh2 b, sin2 b,)-l .- .- __- - 

x [ (+F2 - Ra) (sinh b, sin b, cosh 0, Y cos b, Y - cosh b, cos b, sinh b, Y sin b, Y) 

+ +F(4Ra - F2)t  (sinh b, sin b, sinh b, Y sin b, Y 

+ cosh b, cos b, cosh b, Y cos b, Y)]. (22) 

From (9) and (17) we obtain for the condition F2 = 4Ru, with E 3 Rut 

- = “ [ I -  U 2coshEcoshEY+&E (sinhEcoshEY- YcoshEsinhEY) 
Y E2 2 cosh2 E 1. (23) 

In the absence of radiation the velocity profile is given by 

_ _  UE2 - sinh[(1+ ~ Y)E/2:]sin[(l- Y)E/24]+sinh[(l- Y)E/29]sin[(l+ Y)E/26] - 
Y cash (E24) + cos (E24) 9 

(24) 

which is in agreement with Tao (1960). In  the absence of free convection, Ra = 0, 
and we obtain 

u / y  = &(l - Y”. (25) 

Note that for this case the velocity profile is independent of the temperature 
profile. 
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Results and discussion 
The results for the non-radiating problem are presented in figures 1 and 2 

and show the effect of the Rayleigh number on the velocity and temperature 
profiles. In  figure 1 the ratio of the dimensionless velocity U to the effective 
Reynolds number y is plotted against the dimensionless distance from the axis Y .  
The curve for zero Rayleigh number is the parabolic profile for normal Poiseuille 
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FIGURE 1. Dimensionless velocity profiles 

for non-radiating problem ( F  = 0) .  
FIGURE 2 .  Dimensionless temperature pro- 
files for non-radiating problem (3’ = 0).  

flow at uniform temperature. For increasing values of the Rayleigh number the 
velocities decrease over the entire cross-section of the channel with the upflow 
becoming more concentrated in the region near the wall where the pressure and 
the buoyancy forces augment one another. The corresponding curves for the 
dimensionless distributions of the difference between the wall temperature and 
the temperature of the gas, y-lq5, are shown in figure 2 .  For increasing values of 
the Rayleigh number the increased rate of energy transport to the gas is mani- 
fested in higher gas stream temperatures or aJternatively, in smaller temperature 
differences. The results are similar to those previously presented by Ostrach and 
Morton. 

The results incorporating the effects of radiation on the velocity and tem- 
perature profiles are presented in figures 3 and 4. The effect of radiation is to 
increase the rate of energy transport to the gas, thereby increasing the tem- 
perature of the gas. Thus, for a given value of the Rayleigh number, increasing 
the radiation parameter F results in the flatter temperature profiles shown in 
figure 3. The effect of radiation, therefore, is to reduce the influence of natural 
convection. Recall that the driving force for natural convection is equal to Ra$. 
Thus, the velocities for the radiating natural convection condition are greater 
than those resulting from the corresponding non-radiating natural convection 
problem (cf. figure 4). Furthermore, for large values of the Rayleigh number the 
upflow is less concentrated in the region near the walls when radiation is present. 
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The dimensionless rate of volume flow through the channel per unit of width 
is given by 

2sn'(ulr)dY 

andisplottedagainst Baa in figure 5. The effect of natural convection is to decrease 
the volume flux, the influence becoming more pronounced with increasing values 
of the Rayleigh number. Indeed, there is little effect for small Rayleigh numbers. 
Thus, for small Rayleigh numbers (Ra < 1) the effect of radiation on the flow 
rate is negligible while for moderate values of the Rayleigh number there is a 
significant increase in the flow rate resulting from the radiation interaction. 
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FIGURE 3. Dimensionless temperature pro- 
files including effects of natural convection 
and radiation. -,Rat = 1 ; --, Ra) = 2. 

FIauRE 4. Dimensionless velocity profiles 
including effect of natural convection and 
radiation. -, Ra) = 1 ; --, Rat = 2. 

In describing the heat transfer we define the Nusselt number according to 
Nutot = qtOt,$,/KT8,, where qtot,,, is the total heat flux at either wall, D, is 
the hydraulic diameter which equals twice the channel width ( 4 b )  and KT is 
the thermal conductivity. The difference between the wall temperature and the 

mean temperature across the channel, 8, = T,-T,, is given by 8 d Y .  The 

results for the Nusselt number are presented in figure 6. The effect of natural 
convection is to increase the heat transfer rate although only slightly for Rayleigh 
numbers less than 40. Now, however, the effect of radiation is of importance for 
all Rayleigh numbers and causes a dramatic increase in the heat transfer rate. 

(26) 

where the first term in (26) is the contribution by radiation and the second term 
is the contribution by conduction (andnatural convection) with radiation present. 
The radiative flux at the wall may be obtained by integrating (6) yielding the 
result 

s,' 

The Nusselt number may be written as follows: 

Nutot = Numa -k (NU,o,d)withr~dpresent, 

(27) %ad, wall = bcKT(Tw - Tm), 
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so that Nurad equals 4F. The fact that the optically thin radiative flux is pro- 
portional to Tw- T, and therefore yields a value for NU,,d that is invariant 
with respect to axial distance was previously noted by Greif & MeEligot (1970) 
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FIGURE 5. Dimensionless volume flux including effects of natural convection and radiation. 

for a constant wall temperature problem. Recall that the present problem is 
restricted to small variations in the wall temperature. The contribution to the 
Nusselt number by conduction and natural convection may be directly obtained 
from the relation : 

(NUcond)with rad present = ($)w 9 



520 R. Greif, 1. S. Habib and J .  C .  Lin 

where the temperature profiles, $( Y ) ,  are given in (13), (14) and (19). From the 
results shown in figure 6 it is clear that (28) is only slightly affected by radiation. 
Thus, a very good approximation for the contribution by conduction a,nd natural 
convection to the Nusselt number with radiation present is to simply use the 
result obtained for the non-radiating problem ( F  = 0) so that 

(NUcond)with rad present (NUcond)non-rad. 

Thus, the total Nusselt number (of. (26)) is given to a very good approximation by 

2G(sinh G - sin G) ’ ‘’ + cosh G + cos G - (sinh G + sin G)/2G’ (29) 

where G = 2kRat. 
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